

A Comparison and Mapping of

Data Distribution Service (DDS) and

Java Message Service (JMS)

Rajive Joshi, Ph.D.
Principal Engineer

Real-Time Innovations, Inc.
3975 Freedom Circle, Santa Clara, CA 94054

408-200-4754, rajive.joshi@rti.com

©2006 Real-Time Innovations. All Rights Reserved 2 0406

Abstract

Data-centric design is emerging as a key tenet for building advanced data-
critical distributed embedded and enterprise systems. DDS and JMS are
popular middleware API standards that are easy to use, and offer the
benefits of using a publish-subscribe communication model resulting in
loosely coupled scalable distributed applications. However, their
differences have significant impact on a data-centric design.

DDS and JMS are based on fundamentally different paradigms with
respect to data modeling, dataflow routing, discovery, and data typing; yet
they offer a similar and easy to use experience to the application
programmer. They differ significantly in their support for data filtering and
transformation, connectivity monitoring, redundancy and replication, and
delivery effort. Each also offers some distinct capabilities; and they both
offer some equivalent capabilities. We provide a detailed functional
comparison of the two standards, and discuss their implications on data-
centric design.

We also discuss the practical considerations and differences in using the
two standards. These include middleware architecture, platform support,
interoperability, transports, security, administration, performance,
scalability, real-time application specific support, and enterprise
application specific support.

DDS and JMS APIs may be used together in an application. The can
leverage each other via JMS-DDS bridging, JMS/DDS bindings, or by
using DDS for JMS discovery. We discuss these approaches and their
suitability for different data-centric integration scenarios.

DDS and JMS merit careful consideration for data-centric design and
integration. Using one or both can considerably simplify data-centric
development, and help maintain the focus on application issues, rather
than becoming hijacked by communication and data delivery concerns.

©2006 Real-Time Innovations. All Rights Reserved 3 0406

Introduction

Emergence of data-centric design

Data-centric design is emerging as a key tenet for building advanced data-critical
embedded and enterprise systems, as result of the growing popularity of cheap
and widespread data collection “edge” devices, the easy availability of high
performance messaging and database technology, and the increasing adoption
of SOA and Web Services in the enterprise world. As computation and storage
costs continue to drop faster than network costs, the trend is to move data and
computation locally, using data distribution technology to move data between the
nodes as and when needed.

Data-centric design is key to systems which exhibit some or all of the following
five characteristics: (a) participants are distributed; (b) interactions between
participants are data-centric and not object-centric; often these can be viewed as
“dataflows” that may carry information about identifiable data-objects; (c) data is
critical because of large volumes, or predictable delivery requirements, or the
dynamic nature of the entities; (d) computation is time sensitive and may be
critically dependent on the predictable delivery of data, (e) storage is local.
Examples of data-centric systems are found in traffic control, command and
control, networking equipment, industrial automation, robotics, simulation,
medical, supply chain, and financial processing.

Several middleware technologies and standards have been applied to
construction of distributed systems including DDS, JMS, EJB, HLA, CORBA,
CORBA Notification Service. These middleware technologies fit the requirements
of data-centric distributed systems to varying degrees. Specific requirements
demanded by data-centric distributed systems include (1) ability to specify
structured data models; (2) ability to dynamically specify and (re)configure the
data flows; (3) ability to describe delivery requirements per data flow; (4) ability to
specify and control middleware resources such as queues and buffering; (5)
resiliency to individual node or participant failures; and (6) performance and
scalability with respect to number of nodes, participants, and data flows.

©2006 Real-Time Innovations. All Rights Reserved 4 0406

Data-centric design with DDS and JMS

DDS and JMS are popular publish-subscribe middleware technologies that have
been used to address the requirements of data-centric distributed-system design.

Data Distribution Service (DDS) is a formal standard from the Object
management Group (OMG) popular in embedded systems, especially in
industrial automation, aerospace, and defense applications. DDS specifies an
API designed for enabling real-time data distribution. It uses a publish-subscribe
communication model, and supports both messaging and data-object centric
data models.

Java Message Service (JMS) is a defacto industry standard popular in the
enterprise systems for messaging applications. JMS specifies a Java API for
wrapping message-oriented middleware (MOM) APIs, so that portable
application (Java) application code may be written. In that respect, it is similar to
other Java APIs such as JDBC for abstracting database access, or JNDI for
abstracting naming and directory services. JMS uses a publish-subscribe
communication model, and a messaging or eventing data model.

DDS and JMS are similar in some respects. They both provide standardized
APIs to preserve application portability across middleware vendors; both use a
publish-subscribe (P-S) communication model. The P-S communication model
(Figure 1), uses asynchronous message passing between concurrently operating
subsystems. The publish-subscribe model connects anonymous information
producers with information consumers. The overall distributed system is
composed of processes, each running in a separate address space possibly on
different computers. We will call each of these processes a “participant
application”. A participant may be a producer or consumer of data, or both.

©2006 Real-Time Innovations. All Rights Reserved 5 0406

Middleware: JMS or DDS

ConsumerProducer

ProducerProducer Consumer

Consumer

Consumer Consumer

Publish-Subscribe Middleware

Decouples Producers and Consumers

Declare Intent Register Interest

Deliver

Figure 1 Publish-subscribe middleware decouples information producers from consumers.

Data producers declare the topics on which they intend to publish data; data
consumers subscribe to the topics of interest. When a data producer publishes
some data on a topic, all the consumers subscribing to that topic receive it. The
data producers and consumers remain anonymous, resulting in a loose coupling
of sub-systems, which is well suited for data-centric distributed applications.

Using DDS or JMS middleware can simplify distributed data-centric application
design. The P-S communication model enables a robust service based
application architecture that decouples participants from one another, provides
location transparency, and flexibility to dynamically add or remove participants.
Thus, DDS or JMS middleware often serves as the integration glue or the “data
bus” interconnecting the participants producing or consuming data.

Both DDS and JMS APIs are intuitive and easy to use, and their popularity
mitigates the risk in utilizing them for new data-centric designs.

©2006 Real-Time Innovations. All Rights Reserved 6 0406

DDS and JMS differ in their ability to cater to the key data-centric design
requirements. We discuss these differences with respect to the requirements of
data-centric systems including (1) data modeling and manipulation, including
lifecycle management, data filtering, and transformation; (2) dataflow routing and
discovery, including point to point connectivity; (3) delivery quality of service
(QoS) per data flow, including delivery effort levels, timing control, ordering
control, time-to-live, and message priority; (4) resource specification and
management, including resource limits, and history; (5) resiliency to failures,
including redundancy and failover, and status notifications; and (6) performance
and scalability.

DDS is newer standard based on fundamentally different paradigms than JMS,
with regards to data modeling, dataflow routing, discovery, and data typing; these
differences enable applications designers with powerful new architectural
possibilities. Despite these differences, the user experience of writing to DDS
APIs is similar to that of JMS APIs. Also, they both provide support for persistent
delivery, and time-to-live for a data item. .

DDS offers several enhanced capabilities with respect to data filtering and
transformation, connectivity monitoring, redundancy and replication, and delivery
effort. DDS offers new capabilities with respect to data-object lifecycle
management, predictable delivery, delivery ordering, transport priority, resource
management, and status notifications.

Distinctive DDS capabilities include data modeling and lifecycle management,
automatic dataflow routing, spontaneous discovery, content based filtering and
transformation, per dataflow connectivity monitoring, simple redundancy and
replication, delivery ordering, and real-time specific features such as best efforts
delivery, predictable delivery, resource management, and status notifications.

JMS offers some capabilities not offered by DDS. Distinctive JMS capabilities
include point-to-point delivery to exactly one of many consumers, message
priority, and enterprise specific features such as full transactional support, and
application level acknowledgements.

DDS is amenable to a decentralized peer-to-peer architecture, which can be
more robust and efficient compared to centralized server based architecture
commonly used for JMS. Unlike JMS, which is a Java language standard,
standard DDS APIs are available in many languages. Neither DDS nor JMS
provide an interoperability protocol, although there is one currently under
standardization for DDS. Neither specifies a transport model, although there are

©2006 Real-Time Innovations. All Rights Reserved 7 0406

some capabilities in DDS that are better suited to unreliable transports such as
UDP, while JMS can generally benefit from the availability of a reliable transport
like TCP. Both DDS and JMS defer security to the application, and only provide
support for communicating security credentials. Unlike DDS, JMS requires
administration of the JMS provider (server) and JNDI registries. The API design
choices made by DDS can support potentially higher performance (lower latency
and higher throughput) and better scalability than JMS. DDS has some
capabilities optimized for real-time applications, not found in JMS. JMS has some
capabilities optimized for enterprise applications, not found in DDS.

DDS and JMS can be used simultaneously in an application. Infrastructure
already invested in JMS can leverage DDS, and vice-versa. Possible approaches
include: JMS-DDS bridging, JMS/DDS bindings, and using DDS for JMS
discovery.

DDS and JMS merit careful consideration for data-centric design. Using one or
both can considerably simplify a data-centric design, and help maintain the focus
on application issues, rather than becoming bogged down by communication and
data delivery concerns.

Background

We briefly summarize the key elements of the DDS and JMS middleware
technologies.

DDS Synopsis

DDS targets real-time systems; the API and Quality of Service (QoS) are chosen
to balance predictable behavior and implementation efficiency/performance. The
DDS specification describes two levels of interfaces:

• A lower level Data-Centric Publish-Subscribe (DCPS) that is targeted
towards the efficient delivery of the proper information to the proper
recipients.

• An optional higher-level Data-Local Reconstruction Layer (DLRL),
which allows for a simpler integration into the application layer.

The DCPS model builds on the idea of a “global data space” of data-objects that
any entity can access. Applications that need data from this space declare that
they want to subscribe to the data, and applications that want to modify data in

©2006 Real-Time Innovations. All Rights Reserved 8 0406

the space declare that they want to publish the data. A data-object in the space
is uniquely identified by its keys and topic, and each topic must have a specific
type. There may be several topics of a given type. A global data space is
identified by its domain id, each subscription/publication must belong to the same
domain to communicate.

Figure 2 illustrates the overall data-centric publish-subscribe model, which
consists of the following entities: DomainParticipant, DataWriter, DataReader,
Publisher, Subscriber, and Topic. All these classes extend Entity,
representing their ability to be configured through QoS policies, be enabled, be
notified of events via listener objects, and support conditions that can be waited
upon by the application. Each specialization of the Entity base class has a
corresponding specialized listener and a set of QoSPolicy values that are
suitable to it.

Publisher represents the objects responsible for data issuance. A Publisher
may publish data of different data types. A DataWriter is a typed facade to a
publisher; participants use DataWriter(s) to communicate the value of and
changes to data of a given type. Once new data values have been
communicated to the publisher, it is the Publisher’s responsibility to determine
when it is appropriate to issue the corresponding message and to actually
perform the issuance (the Publisher will do this according to its QoS, or the QoS
attached to the corresponding DataWriter, and/or its internal state).

©2006 Real-Time Innovations. All Rights Reserved 9 0406

UML Diagram of DDS interfaces

DomainParticipantFactory

<<entity>>
DomainParticipant

<<entity>>

Subscriber

<<entity>>

DataReader

<<entity>>

Topic

Data

DataTypeSupport

Each <<entity>> has

1. QosPolicy list
2. Status list and StatusCondition

3. Listener

<<entity>>

Publisher

<<entity>>

DataWriter

Figure 2 UML diagram of the DDS data-centric publish-subscribe interfaces

A Subscriber receives published data and makes it available to the participant.
A Subscriber may receive and dispatch data of different specified types. To
access the received data, the participant must use a typed DataReader attached
to the subscriber.

The association of a DataWriter object (representing a publication) with
DataReader objects (representing the subscriptions) is done by means of the
Topic. A Topic associates a name (unique in the system), a data type, and QoS
related to the data itself. The type definition provides enough information for the
service to manipulate the data (for example serialize it into a network-format for
transmission). The definition can be done by means of a textual language (e.g.
something like “float x; float y;”) or by means of an operational “plugin” that
provides the necessary methods.

©2006 Real-Time Innovations. All Rights Reserved 10 0406

The DDS middleware handles the actual distribution of data on behalf of a user
application. The distribution of the data is controlled by user settable Quality of
Service (QoS).

JMS Synopsis

JMS targets enterprise messaging; the API is chosen to abstract the
programming of a wide variety of message-oriented-middleware (MOM) products
in a vendor neutral and portable manner, using the Java programming language.

Figure 3 illustrates the structure of the JMS API. A Destination refers to a
named physical resource managed by the underlying MOM. It is administered
and configured via vendor provided tools, and typically accessed by a user
application via the Java Naming and Directory Interface (JNDI) APIs (external to
JMS). A MessageProducer will send messages to a destination and a
MessageConsumer can receive messages from a destination. The destination
can be thought of a mini-message broker or a channel independent of the
producers and consumers.

Destination
(Administered Object)

ConnectionFactory
(Administered Object)

Administered objects are typically
obtained via Java Naming and

Directory Interface (JNDI) APIsConnection

UML Diagram of JMS interfaces

Session

MessageProducer MessageConsumer

Concrete classes are defined for
Queue and Topic “domains”.

E.g. QueueConnection,

TopicConnection

Message

There are five concrete

message types

Figure 3 UML diagram of JMS messaging interfaces

©2006 Real-Time Innovations. All Rights Reserved 11 0406

JMS supports two different “messaging domains” (unrelated to the DDS domain
concept) point-to-point (PtP) and publish-subscribe (Pub/Sub). The two
messaging domains are provided to support the wide variety of MOM vendors;
only one of them is required to be supported by a JMS provider, although many
support both. They provide two different sets of derived classes that extend the
common abstract APIs, as shown in Figure 4.

JMS Common JMS PtP Domain JMS Pub/Sub Domain
ConnectionFactory QueueConnectionFactory TopicConnectionFactory
Connection QueueConnection TopicConnection
Destination Queue Topic
Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher
MessageConsumer QueueReceiver TopicSubscriber

Figure 4 The PtP and Pub/Sub JMS domains extend common abstract interfaces, and
follow the same programming idioms.

The two JMS messaging domains are similar in every respect, except for the
following ways.

1. In PtP messaging domain, only one consumer will receive a message; the
policy is not specified by JMS and left up to the vendor. The messages are
delivered in the order they are produced (as if put into a shared serial
queue). Also, an application can peek ahead using a QueueBrowser.

2. In the PtP messaging domain, the consumers are durable (see below),
and therefore don’t have to be running concurrently with the producers to
receive messages. This can be achieved in the JMS Pub/Sub messaging
domain by using durable subscriptions

A ConnectionFactory refers to vendor provided factory for Connection objects,
and is also configured and administered using vendor provided tools, and
typically obtained via JNDI APIs. An optional username, and password may be
supplied when creating a Connection.

A Connection is a heavy-weight object representing the link between the
application and the middleware. Its attributes include a clientID. It provides
methods to start() and stop() communication and to close() a connection. An
ExceptionListener may be registered with it, to trap lost connections. A
Connection is used to create Session objects.

©2006 Real-Time Innovations. All Rights Reserved 12 0406

A Session represents a single threaded context for producing and/or consuming
data. It provides methods to create Messages, MessageProducers and
MessageConsumers. Its attributes include whether it isTransacted and the
acknowledgementMode. In a transacted session, messages are not actually
sent (MessageProducer) or the received messages not acknowledged
(MessageConsumer) until a commit() operation. A rollback() operation can
undo the pending messages to be sent (MessageProducer) or acknowledged
(MessageConsumer). The acknowledgementMode determines whether
received messages should be automatically acknowledged such that duplicates
may (or may not) be received, or whether they must be explicitly acknowledged
by the application by calling Message.acknowledge().

A Message is a first class object in JMS; it represents an event, and can carry an
optional payload. A message is comprised of headers, optional user defined
properties, and an optional user data payload. The JMS provider automatically
assigns most message headers including: destination, delivery mode, message
id, timestamp, expiration, redelivery flag, and priority. The user can assign some
headers, including: reply to, correlation id, and type. In addition, the user can
associate arbitrary properties consisting of (name, value) pairs. These properties
can be used in ‘selectors’, which are expressions specified on a
MessageConsumer to sub-select and consume only the matching messages.
JMS defines five message subclasses to conveniently specify the data payload.
The message subclasses for unstructured payloads include TextMessage,
ByteMessage, and ObjectMessage; and for structured payloads include
StreamMessage and MapMessage.

A MessageProducer is used to produce messages. A default destination may
be specified when the producer is created; it can also be specified when sending
messages. In addition, the delivery mode, priority, and expiration can be
specified for the outgoing message headers. A persistent delivery mode means
that a message will be delivered once-and-only-once; the message is stored in
permanent storage before the send() method returns. A non-persistent delivery
mode means that the message will be delivered at most once; a message may
be dropped if the JMS provider fails.

A MessageConsumer is used to consume messages from a destination. A
selector can be specified when creating a consumer; the consumer will only
deliver the messages whose properties match the selector expression. Message
can be delivered asynchronously by registering a MessageListener; the
onMessage() method will be called when a message arrives. Alternatively,
messages can also be received synchronously by calling receive*() methods, the

©2006 Real-Time Innovations. All Rights Reserved 13 0406

desired timeout (zero, finite, infinite) can be chosen by the user. A consumer can
be durable; for the Pub/Sub messaging domain this is specified by calling
Session.createDurableSubscriber() and specifying a subscription name; in the
PtP messaging domain, a QueueReceiver is always durable. A durable
consumer receives all messages sent to a destination, including ones that are
sent when the consumer is inactive. The JMS provider retains a record of the
durable consumer(s) and ensures that all messages from the destination’s
producers are retained until the durable consumer acknowledges them or they
have expired.

A Session can also create unique temporary destinations (TemporaryQueue or
a TemporaryTopic), which are like administered destinations except that they
are only valid for the duration of the connection and only the consumers
associated with the connection can consume the messages. However anyone
can produce on the temporary destinations; their presence is typically conveyed
to other producers using the Message.setReplyTo() method.

JMS-DDS Equivalents

We restrict our discussion of DDS to the DCPS layer, which has resemblances to
JMS. There is no DLRL counterpart in JMS. A map of key JMS concepts and
terminology and the DDS equivalents is summarized below. Additional details
can be found in the following sections.

JMS DDS
Client Application
Provider = client runtime + server (if
any)

Middleware, Service

Domains are PtP and Pub/Sub Domain represents a global data space,
comprised of a set of communicating user
applications

ConnectionFactory DomainParticipantFactory
Connection

start()
DomainParticipant

enable()
Session Publisher, Subscriber

©2006 Real-Time Innovations. All Rights Reserved 14 0406

 FooTypeSupport extends TypeSupport
Used to register a user type ‘Foo’
with a DomainParticipant

Destination
A named physical resource that
gathers and disseminates
messages addressed to it

Topic (of type “Foo”)
An abstraction with a unique name,
data-type, and QoS, used to connect
matching DataWriters and
DataReaders

Message Foo (data-object)
An instance of type ‘Foo’

MessageProducer FooDataWriter extends DataWriter

MessageConsumer FooDataReader extends DataReader

Figure 5 Mapping of key JMS and DDS concepts and terminology.

Comparison of JMS and DDS

Fundamental paradigm differences

There are some fundamental conceptual differences between DDS and JMS,
which deeply impact data-centric design. These differences are discussed below.

Data modeling: Autonomous messages vs. Data-objects

P-S middleware can be distinguished in their use of data models, which ranges
from (1) messaging or eventing, where the data payload is opaque to the
middleware; to (2) data-object centric, where the data payload is interpreted and
managed by the middleware. Messaging or eventing P-S middleware treat a
message on a topic as an event with an optional data payload that is opaque to
the middleware. Data-object centric (or simply data-centric) P-S middleware
allow an application to identify ‘data-objects’ to the middleware. The ‘data-
objects’ are unique in the ‘global data space’ of the distributed system across all
participants. Each participant is regarded as having a local cache of the
underlying global data-object. A message on a topic is regarded as an update to
the underlying data-object that can be identified and managed by the

©2006 Real-Time Innovations. All Rights Reserved 15 0406

middleware. Local changes to a data-object are propagated by the middleware;
the middleware can distinguish between messages or update samples from
different data-objects and manage their delivery to the interested participants on
a per data-object basis.

JMS does not support an underlying data model; it is a pure “messaging” or
“eventing” middleware, and treats a message as an event with an optional data
payload that is opaque to the middleware. A JMS message is a self-contained
autonomous entity, representing an event with optional data payload. In its
lifetime, a message may be (re)sent multiple times across multiple processes. A
JMS client on the way may examine it, consume it, forward it, or generate new
messages to accomplish its task. A message is uniquely identified with
messageId, and carries with it its deliveryMode, priority, expiration, correlationID,
redelivery flag, reply destination, and so on in the header fields. Message
payload contents are not interpreted or managed by the JMS provider; each
message is a unique and distinct entity. Data modeling capabilities, if needed,
will have to be provided at the application layer, in the JMS client software.

DDS Peer (Consumer)DDS Peer (Producer)

DDS Domain (Global Data Space)
DDS Domain (Global Data Space)

Application

DomainParticipant

Publisher

Data
Updatewrite()

Application
DataReaderListener.on_data_available()

SubscriberListener.on_data_on_readers()

DomainParticipant

Subscriber

read()
take()

Data
Samples

DataWriter DataReader

Peer-to-Peer Interaction

Data-centric

Key

Data-object

Topic

Data

Sample

Data

Sample

Matching Topic, Compatible QoS
Data samples are routed

directly from the
Publisher to the Subscriber

Figure 6 DDS provides a relational data model. The middleware keeps track of the data-

objects instances, which can be thought of as rows in a table.

©2006 Real-Time Innovations. All Rights Reserved 16 0406

DDS is data-object centric middleware, and supports a relational data model
commonly used in database applications, as illustrated in Figure 6. In database
terms, a topic corresponds to a Table; the table schema corresponds to the topic
type. Certain type fields (columns) can be marked as keys (primary keys) in the
type description (table schema). A data-object instance is identified by its keys,
and corresponds to a row in the table. Underlying this data model is an implicit
assumption of a shared global data space in which the data-objects live. The
global data space is defined by the communicating applications in the DDS
domain. Each participant is viewed as having access to a local cache of the
topics (tables) in the global data space. A DataWriter can write (or update) one or
more data-object instances (or rows) in its local cache. The updates are
propagated by the middleware to the associated DataReaders for the topic, and
are delivered as samples to be applied to the local cache on the receiving end.
The DDS middleware can distinguish between different data-object instances
based on the keys, and can manage the delivery of samples on a per data-object
instance basis. Since the keys are embedded in the data type, relations between
data-object instances are also implicitly managed by the DDS middleware.

DDS also supports unkeyed topic types, which are effectively equivalent to
messaging (or eventing), as supported by JMS.

Unlike JMS, where messages are first class objects, DDS messages are user
defined types and do not carry any ‘per message’ user settable headers or fields.
However, the user is free to define the message data type, and therefore can
specify needed fields.

As a consequence of this difference, DDS data delivery has the potential to be
higher performance than JMS messages delivery, because the extra overhead of
manadatory headers per message is not required with DDS.

©2006 Real-Time Innovations. All Rights Reserved 17 0406

Dataflow routing: Specific destinations vs. Matching endpoints

JMS Client (Consumer)JMS Client (Producer)

JMS Provider (Server)

Application

Connection

Session

Message

Producer

Messagesend()

Application
MessageListener.onMessage(Message m)

Connection

Session

Message

Consumer

Messagereceive()

Message Message

Destination

Message

Messages are routed

via the Destination

Client-Server Interaction

Message-oriented

Administrative Tool

(JNDI Namespace)

Figure 7 JMS destinations are logical message stores or channels configured using

administrative tools supplied by the JMS vendor.

JMS destinations (Queue or Topic) are logical “message stores or channels”,
uniquely defined and managed by the middleware, as shown in Figure 7. A
destination may be configured statically in the middleware using JMS vendor
provided configuration tools; or it may be created dynamically using temporary
destinations. In either case, they represent unique well-defined “channels” in the
middleware. A destination and can hold any type of message (since JMS is
opaque to the payload). A consumer is attached to a specific destination from
which it will receive messages. A producer can specify the destination at the time
of sending a message. A destination acts as a “mini-broker” managing the
delivery of the messages sent to it. A dataflow is established between a producer
and a consumer via the destination as the intermediary.

©2006 Real-Time Innovations. All Rights Reserved 18 0406

A DDS topic represents an association between compatible DataWriters or
DataReaders bound to the topic, in the global data space. A topic has a name,
type, and associated QoS. An endpoint (DataReader or DataWriter) is tightly
bound to a specific topic and may additionally specify different desired QoS. A
dataflow between a DataReader and DataWriter is only established when the
type and QoS offered by the DataWriter is compatible with that requested by the
DataReader (Figure 8).

DDS Domain (Global Data Space)
DDS Domain (Global Data Space)

DDS Peer (Producer)

Application

DomainParticipant

Publisher

DataWriter

DDS Peer (Consumer)

Application
DataReaderListener.on_data_available()

SubscriberListener.on_data_on_readers()

DomainParticipant

Subscriber

DataReaderTopic

Offered

QoS

Requested

QoS

Peer-to-Peer Interaction

Data-centric

S Communication

Not established

Matching Topic,

Incompatible QoS

Communication is not established

Requested QoS

Incompatible with

Offered QoS

Figure 8 DDS topics represent a name, type, and QoS. DDS provides a spontaneous
connection mechanism, which automatically connects matching DataReaders and

DataWriters.

The DDS requested/offered mechanism establishes dataflows only between
matching endpoints associated with a topic in the global data space. DDS notifies
the application of incompatible endpoints, when a dataflow cannot be
automatically established. Thus, DDS middleware truly acts like an “information
bus”, where dataflows are dynamically established and removed.

©2006 Real-Time Innovations. All Rights Reserved 19 0406

Unlike JMS, where a producer sends to a specific destination, a DDS DataWriter
(producer) never specifies a destination; in DDS the dataflows are automatically
managed by the DDS middleware based on matching subscriptions. A DDS
middleware implementation can take advantage of this behavior by supporting
direct data transfer from a DataWriter to a DataReader, without involving an
intermediary; thus it has the potential for better performance and scalability than
JMS.

Discovery: Administered vs. Spontaneous

JMS discovery is administered and centralized. JMS discovery requires that the
producers and consumers be able to find and bind to the destinations (and not
each other). There are two mechanisms for JMS destination discovery.

• Static destinations are discovered via JNDI APIs, which bind logical
destination names to destination objects. The static destinations
accessible this way must have been previously configured in the JMS
middleware (server) using vendor supplied administrative tool (Figure

7).
• Destinations (including temporary destinations) may also be

discovered via the replyTo attribute of received messages. In order to
discover a destination using this mechanism, a static destination must
have already be previously established.

Since JMS discovery is administered, the static destinations must be determined
and configured before a client can use them. Determining what static
destinations to use is a critical aspect of a distributed system design, and must
be considered carefully prior to deploying a system based on JMS. Evolving the
system configuration for new requirements also requires careful planning and
administration. Destinations take up physical resources, so destinations no
longer needed in distributed system must be purged, and new ones added as
needed over the lifetime of a distributed system based on JMS.

DDS discovery is spontaneous and decentralized. DDS requires that endpoints
be able to find each other to determine if they are compatible and whether a
dataflow should be established (Figure 8). Thus, discovery is implicit in the
dataflow routing mechanism.

DDS provides APIs for an application to access the internal middleware
discovery meta-data by means of built-in topics. The internal meta-data that

©2006 Real-Time Innovations. All Rights Reserved 20 0406

can be accessed by a user application includes information such as participants
joining/leaving a domain, creation/deletion of topics, data readers, and data
writers in a domain. The DDS DomainParticipant.get_builtin_subscriber()
method can be used to monitor the following builtin-topics: DCPSParticipant,
DCPSTopic, DCPSPublication, DCPSSubscription.

Since DDS discovery is spontaneous, the topics can dynamically change over
the lifetime of a deployed distributed system based on DDS, without any
administrative impact. Endpoints on new topics are discovered automatically, and
dynamic dataflows established in a plug-n-play fashion. The spontaneous
discovery mechanism of DDS can also potentially scale better as the span of a
distributed system grows.

Data typing: Predefined message types vs. Arbitrary user data
types

JMS provides five predefined message types, to conveniently specify different
types of message payloads. Since JMS destinations are not typed, any type of
payload can be produced and consumed on a destination. If a consumer has a
different idea of the message payload than the producer, it will manifest as
runtime typecasting exception when the consumer tries to access the payload
using a different message type. Also, the user data payload must be converted
into one of the available message types, thereby involving conversion overhead
between user data type and JMS message types at both the producer and
consumer ends.

DDS does not provide any predefined message or data types. Instead it uses the
data types defined in the programming language. Typically these are specified
using interface definition language (IDL) in a programming language neutral way.
Middleware vendor provided tools are used to generate a programming language
type, and corresponding type support classes. For example, given a user type
Foo, type specific FooTypeSupport, FooDataWriter, and FooDataReader are
generated with APIs as per the DDS standard. This approach has several
advantages: it allows for higher performance by eliminating a potential extra
conversion between a user type and a middleware type; it potentially enables the
user to plugin their own data serialization ad deserialization scheme. Also, since
DDS topics are strongly typed, the middleware can detect a type mismatch
between the endpoints and notify the application.

©2006 Real-Time Innovations. All Rights Reserved 21 0406

User experience similarities

Despite the fundamental paradigm differences, the DDS and JMS user
experience is somewhat similar, making it relatively easy to understand and
switch back-and-forth between the two programming models. Figure 9 illustrates
the key steps in writing a JMS client (application). Figure 10 illustrates the key
steps in writing a DDS application. The steps needed to write a user application
are summarized below.

Figure 9 JMS programming model.

©2006 Real-Time Innovations. All Rights Reserved 22 0406

Domain

Participant

Factory

Domain

Participant

Publisher
Topic

DataWriter

creates

creates

creates

creates

writes

DDS Programming Model

Subscriber

DataReader

creates

creates

reads/takesData

DataTypeSupport

Figure 10 DDS programming model.

Step JMS (Figure 9) DDS (Figure 10)
0 Decide messaging domain: PtP or

Pub/Sub.
Decide domain id, which represents
a global data space, and isolates
communication relative to other
domains.

1 Get the ConnectionFactory from
the
Environment, typically using JNDI.

Get the DomainParticipantFactory,
which is a singleton class.

2 Create a Connection. Set the
clientID if needed. May also
specify an ExceptionListener if
needed.

Create a DomainParticipant,
specifying the QoS associated with it,
and optionally a listener.

©2006 Real-Time Innovations. All Rights Reserved 23 0406

3 Create a Session. Decide if the
session should be transacted, and
the acknowledgement mode to
use.

Create a Publisher (for a producer
application) or a Subscriber (for a
consumer application). Specify the
QoS and optionally a listener.

4a Register the user type with the
domain participant. A user type Foo
is registered under the name “Foo”
by calling
FooTypeSupport.register_type(
participant, “Foo”)

4b Get a Destination. An
administered destination is
typically obtained using JNDI.
Alternatively, a temporary
destination can be created from
the Session object.

Create a named Topic from the
domain participant for the registered
user type. Specify the QoS
associated with the topic, and
optionally a listener.

Use a ContentFilteredTopic to
deliver a sub-set of samples that
meet a certain selection criteria; and
a MultiTopic to combine and
transform received samples on
various topics into a desired format.

5 Producer Producer
5a Create MessageProducer,

specifying the default Destination
on which it will send messages.

Given a topic of type Foo, create a
FooDataWriter bound to it. Specify
the QoS and optionally a listener.

5b Create a Message of the sub-type
appropriate for the data payload.
Optionally, set the replyTo
attribute to specify the
Destination on which the client
wants a reply. Also specify custom
message properties as
appropriate.

5c Set the message data payload (if
any)

5d Send the message. Specify the,
deliveryMode, priority, and
expiration. Optionally specify an
alternative Destination.

Write an instance of user type Foo
using the FooDataWriter.

©2006 Real-Time Innovations. All Rights Reserved 24 0406

6 Consumer Consumer
6a Given a Destination, create a

MessageConsumer for it.
Optionally specify selectors to
sub-select messages, and decide
whether local messages from
producers on this connection
should be ignored or not.

If using a Pub/Sub messaging
domain, also decide whether the
subscription should be durable
(survive consumer failures and
inactivity periods).

Given a topic of type Foo, create a
FooDataReader bound to it. Specify
the QoS and optionally a listener.

6b Decide whether to consumer
messages asynchronously or
synchronously. For asynchronous
delivery, register a
MessageListener and process
the incoming messages in its
onMessage() method.

For synchronous delivery, call the
appropriate receive() method with
desired timeout (if any).

Decide whether to receive updates
asynchronously or synchronously.
For asynchronous delivery, register a
DataWriterListener and process the
incoming updates in its
on_data_available() method.

For synchronous delivery, use a
WaitSet to wait for data to become
available, specifying the desired
timeout (if any).

6c Process the message. May want
to look at the replyTo attribute find
out the destination on which the
producer is expecting a reply. If a
reply is sent (Step 5), may set the
correlationID attribute of the
outgoing message.

Process the received samples.

Since the type Foo is user-defined,
we can specify fields in the user type
to convey a reply topic, or a
correlation id, or other attributes as
needed.

6d If using a PtP messaging domain,
may use a QueueBrowser to
peek ahead at the messages in
the Queue.

Can use FooDataReader to peek
ahead using the read() methods.
Samples are removed (or taken)
from the middleware using the take()
methods.

©2006 Real-Time Innovations. All Rights Reserved 25 0406

Capability differences

DDS and JMS offer distinct capabilities that impact deeply impact the
architectural design of applications utilizing them.

Data filtering and transformation

In JMS, arbitrary (name, value) property pairs can be tagged on a message. The
properties can be used in selector expressions specified on a consumer. This
allows a consumer to sub-select the messages that are delivered to the
application. Note that the message filtering mechanism does not look at the data
contents; instead it is solely based on the properties of the message. JMS does
not provide data transformation capability.

DDS provides two constructs (1) ContentFilteredTopic for filtering data samples
on a topic based on its contents; and (2) MultiTopic for transforming data
samples received on multiple topics into a new data representation. These
constructs simplify data management, since they operate directly on the user
data model, and unlike JMS, not on separately maintained properties associated
with the data.

As a consequence, DDS middleware has the potential to be higher performance
than JMS, since there is no extra overhead of computing, setting, and
communicating additional message properties.

Connectivity monitoring

Connectivity monitoring refers to ability of an application to determine that it is no
longer communicating with other endpoints or participants.

JMS supports ExceptionListener on a Connection to notify an application that
it has lost the connection with the middleware.

DDS supports several QoS levels for detecting loss of connectivity, via the
liveliness mechanism. A DataWriter is considered to be alive and connected to a
DataReader if it asserts its liveliness within a lease_duration. The liveliness be
asserted automatically by the middleware; as a side-effect of some user
operation on the DomainParticipant; or explicitly by calling assert_liveliness().

©2006 Real-Time Innovations. All Rights Reserved 26 0406

The LIVELINESS QosPolicy specifies the lease duration, and the method of
asserting the liveliness.

When a DataWriter does not assert its liveliness within its lease period, the
application is notified via the DataReaderListener.on_liveliness_changed()
method. The application can install a listener on the “DCPSParticipant” builtin
topic to detect if there are any participants communicating with it.

While JMS supports a simple mechanism for detecting connectivity loss with the
JMS provider (and therefore other participants); DDS supports detection of
connectivity loss between producer and consumer endpoints, as well as
participants. This simplifies the design of fault-tolerant applications, and enables
DDS applications to have self-healing qualities.

Redundancy and replication

In JMS, all the messages produced on a destination are seen by a consumer.
Setting up redundant and replicated producers (primary and secondary) requires
application level coordination and synchronization between the primary and
secondary producers.

DDS provides two QoS policies that, combined with the spontaneous discovery,
make it very simple to setup redundant replicated data producers. The
OWNERSHIP QoSPolicy determines whether a DataReader will receive updates
of data from just one DataWriter (the strongest), or from any associated
DataWriter. The OWNERSHIP_STRENGTH QoSPolicy determines if a
DataReader is to receive from only the strongest DataWriter; this QoSPolicy is
set on each DataWriter and the one with the largest strength number will be the
DataWriter a matching DataReader receives from.

Thus, a primary DataWriter and a replicated secondary DataWriter can be setup
with ownership set to exclusive (i.e. updates will be received from only one
DataWriter). The primary DataWriter is assigned higher strength than the
replicated secondary writer. When the primary fails (connectivity is lost), the
secondary writer will seamlessly take over. When the primary is restarted, it will
shadow the secondary producer as long as it is active. This simple redundancy
and replication mechanism can scale well for a large system, and gives a self-
healing quality to DDS applications.

©2006 Real-Time Innovations. All Rights Reserved 27 0406

Delivery effort

JMS always attempts to deliver a message and receive an acknowledgement.
JMS will attempt to redeliver a message (marking it as such) until the receiving
end acknowledges it.

Like JMS, DDS also supports acknowledged delivery mode. In addition, it also
supports a “best efforts” mode, in which messages are not acknowledged by the
receiving end. This behavior may be specified via a RELIABILITY QosPolicy on a
DataWriter, DataReader, or a Topic. This policy determines whether a message
should be sent best effort (send once without expecting acknowledgements) or
reliably (resent until positively acknowledged).

The DDS best efforts mode enables data to be transferred with minimal latency,
and is well suited to the needs of many high-performance real-time sensor based
applications.

User meta-data

User meta-data refers to the ability to associate additional user-specified
information with the data delivered by the middleware.

JMS supports user meta-data by means of message properties, which are
(name, value) pairs that can be specified on a per message basis.

DDS supports user meta-data by providing a USER_DATA QosPolicy, which
allows an application to associate arbitrary information with the DataReader,
DataWriter endpoints, or the DomainParticipant. The user meta-data is
accessible via the built-in topics. The contents of the USER_DATA QosPolicy are
mutable, and can be changed as needed.

The DDS approach for associating user meta-data with the endpoints, rather
than per message can potentially support higher performance, as the user meta-
data does need to be set and transferred on a per message basis.

Note that in DDS, per message properties can be achieved, by creating a
wrapper user data type that contains a sequence of (name, value) pairs. This can
be done in the application code.

©2006 Real-Time Innovations. All Rights Reserved 28 0406

Delivery acknowledgements

JMS messages always require acknowledgement. The acknowledgement mode
is specified on a per session basis. It may be automatic
(AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE) or explicit
(CLIENT_ACKNOWLEDGE). In the CLIENT_ACKNOWLEDGE mode, a
message must be explicitly acknowledge by the application by calling
Message.acknowledge(). The CLIENT_ACKNOWLEDGE mode is useful for
guaranteeing end-to-end message delivery.

DDS sample updates are only acknowledged when the RELIABILITY QosPolicy
is set to RELIABLE message delivery. The acknowledgements in DDS are
automatic; there is no explicit method for a user application to acknowledge a
received sample, and thereby indicate that it has actually consumed it.

Transactional behavior

A transaction allows a group of operations to be treated as a single unit of work.
Either none or all the operations in the group are executed as a unit. If a
transaction is rolled back, or one of the operations in the group fails, none of the
operations take effect. Otherwise, all the operations take effect when a
transaction is committed.

JMS supports transacted sessions. A MessageProducer in a transacted session
actually sends the messages when a Session.commit() is called. Likewise, a
MessageConsumer acknowledges the received messages only when the session
is committed. A new transaction implicitly begins after the last commit. The
Session.rollback() method may be called to undo the uncommitted messages
waiting to be sent by a MessageProducer or acknowledged by a
MessageConsumer. Send operations may be mixed with receive operations in a
transaction.

The scope of a JMS local transaction is limited to the session. JMS supports the
Java Transaction API (JTA) so that a JMS connection or a session can be used
with a JTA compliant transaction manager to participate in a distributed
transaction, using a two or three-phase commit protocol.

DDS partially supports transactional behavior for sending data via the notion of a
set of “coherent changes”. A coherent set of changes is a set of modifications
that must be propagated in such a way that they are interpreted at the receiver's

©2006 Real-Time Innovations. All Rights Reserved 29 0406

side as a consistent set of modifications; that is, the receiver will only be able to
access the data after all the modifications in the set are available at the receiver
end. A coherent set of changes behaves as if sent atomically; if an event occurs
that prevents a subscriber from receiving the entire set of coherent changes, it
must behave as if it had received none of the set.

A coherent set of changes bracketed by calls to the
Publisher.begin_coherent_changes() and
Publisher.begin_coherent_changes() methods. The PRESENTATION
QosPolicy controls the scope within which changes to set of data-object
instances are considered coherent, and whether the ordering within that scope
should be preserved.

The support for coherent changes enables a publishing application to change the
value of several data-instances that could belong to the same or different topics
and have those changes be seen atomically by the readers. This is useful in
cases where the values are inter-related (for example, if there are two data-
instances representing the altitude and velocity vector of the same aircraft and
both are changed, it may be useful to communicate those values in a way the
reader can see both together; otherwise, it may e.g., erroneously interpret that
the aircraft is on a collision course).

DDS’s support for transactional behavior is partial. It does not provide a way for
an application to rollback a coherent set of changes. Also, DDS does not provide
support facilities for participating in distributed transactions, using JTA compliant
or other transaction processing monitors.

Point-to-point delivery

In the JMS PtP messaging domain, a destination (Queue) may have multiple
consumers (QueueReceivers) and producers (QueueSenders). A message is
processed by exactly one of the attached consumers. Thus, a message is
delivered point-to-point, from the producer to one of the many available
consumers. The policy for selecting a consumer is left up-to the middleware
provider. Upon message redelivery (if any), a message may get dispatched to a
different consumer. The point-to-point delivery mechanism in the JMS PtP
messaging domain makes it very easy to distribute processing load across
multiple identical consumers, thus providing a simple means for load balancing.
However, since PtP behaves as if the messages are put in a single logical queue

©2006 Real-Time Innovations. All Rights Reserved 30 0406

and handed over to one of the available consumers, this messaging domain will
generally be less scalable that the Pub/Sub domain.

DDS does not support a point-to-point delivery mechanism. All the matching
consumers associated with a topic will receive updates. The PARTITION
QosPolicy may be used to partially achieve point-to-point delivery. A PARTITION
QosPolicy, specifies a set strings that introduce a logical partition among the
topics visible by a Publisher and a Subscriber. A DataWriter within a Publisher
only communicates with a DataReader in a Subscriber if (in addition to matching
the Topic and having compatible QoS) the Publisher and Subscriber have a
common partition name string. A change of this policy can potentially modify the
"association" of existing DataReader and DataWriter entities. It may establish
new "associations" that did not exist before, or break existing associations. Point-
to-point delivery may be accomplished by: (1) assigning a unique partition name
to every consumer (Subscriber, DataReader pair); and (2) switching a producer
(Publisher, DataWriter pair) among those partition names. The consumer
selection policy can be configured in a variety of ways, at the application level.

Delivery priority

JMS messages have a priority header. The value of this header can be set
directly on a message, or specified as a property of the producer. Higher priority
messages are delivered ahead of lower priority messages.

DDS does not support the notion of delivery priority on data updates.

The priority is a hint in JMS. The middleware is not required to deliver the
messages in priority order.

Capability equivalents

For certain capabilities, DDS and JMS offer equivalent ways of achieving the
same results.

Persistency and Durability

Persistency refers to the ability of specifying data delivery so that it survives
middleware failures. With persistent delivery, an application is assured that when

©2006 Real-Time Innovations. All Rights Reserved 31 0406

a send or a write operation returns, the middleware will not lose the data even if it
crashes.

Durability refers to the ability of a consumer to receive data sent to its destination
or topic even when it is not active. After a durable consumer starts, either for the
first time or after a crash, it receives any messages destined for it (while it was
inactive).

JMS provides independent mechanisms for controlling both persistency and
durability. In JMS durability is specified by creating a durable consumer: either by
creating a QueueReceiver, or by calling Session.createDurableSubscriber().
Persistency is specified by deliveryMode used to send message. For
PERSISTENT delivery mode, a message is persisted on permanent storage
before the send method returns to the caller; the message is delivered once-and-
only-once (redelivered messages are marked). For NON_PERSISTENT delivery
mode, a message is not persisted before the send operation returns to the caller;
the message is delivered at-most-once (allowing for the possibility of loosing a
message after the send operation has completed, but before it can be delivered
because of middleware failure). Note that NON_PERSISTENT messages may be
saved on permanent storage anyway, in order to support durable consumers.

DDS also provides a means for independently controlling persistency and
durability. The DURABILITY QosPolicy determines whether or not the
middleware should save already-sent samples in case new a DataReader joins
the later. There are several kinds of durability settings: VOLATILE to indicate that
a DataReader will not receive any samples missed while it was inactive;
TRANSIENT_LOCAL to indicate that a late joining DataReader will receive
missed samples only from the DataWriters that are still active; TRANSIENT to
indicate that a late joining DataReader will receive missed samples as long as
the middleware has not crashed; and PERSISTENT to indicate that a late joining
DataReader will receive missed samples even if the middleware crashed.

The DDS DURABILITY QosPolicy can be independently specified on
DataWriters, DataReaders, and Topics. Persistency is assured by the
PERSISTENT setting of the QosPolicy on a DataWriter. Durability (with different
levels of service) is assured by TRANSIENT_LOCAL, TRANSIENT, or
PERSISTENT settings of the QosPolicy on a DataReader.

Compared to JMS, DDS provides several levels of quality of service to controlling
persistency and durability.

©2006 Real-Time Innovations. All Rights Reserved 32 0406

Time to live

The “time to live” for a message or data sample specifies how long it is valid.

JMS messages have an expiration header. The value of this header can be set
directly on a message, and specified as a property of the producer.

DDS provides a LIFESPAN QosPolicy on a DataWriter and Topic, which
specifies how long the data written by a DataWriter is considered valid.

In either case, messages or data samples that are no longer valid are
automatically purged by the middleware.

New capabilities in DDS

DDS is a newer standard that addresses a broad range of data-centric design
requirements; it has had the benefit of JMS hindsight. DDS supports some
capabilities that have no counterpart in JMS.

Data-object lifecycle management

DDS middleware is cognizant of the underlying relational data model, and
provides facilities that enable it to manage the lifecycle of data-object instances.
An application can express the intent to produce updates to a data-object
instance by calling DataWriter.register_instance(); and conversely negate this
intent by calling DataWriter.unregister_instance(). A DataWriter.dispose() can
be used to indicate that a data-object instance is deleted; it is analogous to
deleting a row in a table.

A DataReader keeps track of a data-object instance’s status which can be ALIVE
meaning there are connected DataWriters that may update it,
NOT_ALIVE_NO_WRITERS meaning that there are no connected DataWriters
that may update it, and NOT_ALIVE_DISPOSED meaning that that it has been
explicitly disposed by a DataWriter.

The READER_DATA_LIFECYCLE QosPolicy specifies how long the DataReader
must retain information regarding data-object instances that have the state
NOT_ALIVE_NO_WRITERS.

©2006 Real-Time Innovations. All Rights Reserved 33 0406

The WRITER_DATA_LIFECYCLE QosPolicy controls whether or not a
DataWriter will automatically dispose instances each time they are unregistered.

Predictable delivery

DDS provides QosPolicies specifically targeted to minimum latency, predictable
real-time operation in high-performance distributed data-critical systems.

The DEADLINE QoSPolicy expresses the maximum duration (deadline) within
which a DataReader expects a data-object instance to be updated. If a sample is
not received within the deadline, a listener method is called.

The TIME_BASED_FILTER QosPolicy specifies a minimum_separation value
that allows a DataReader to specify that it interested only in (potentially) a sub-
sampled set of the values for a data-object instance. A DataReader does not
want to receive more than one sample each minimum_separation for a data-
object instance, regardless of how fast the changes occur at a DataWriter.

The LATENCY_BUDGET QosPolicy provides a hint as to the maximum
acceptable delay from the time the data is written to the time it is received by the
subscribing applications.

Delivery ordering

DDS provides QosPolicies to control the ordering of received samples.

The DESTINATION_ORDER QosPolicy controls the criteria used to determine
the logical order among changes made by different Publishers to the same data-
object instance. The order can be by reception timestamp or by source
timestamp when a sample was written.

The PRESENTATION QosPolicy specifies how a coherent set of samples
representing changes to data-object instances made by a single Publisher are
presented to a subscribing application. This policy affects the application's ability
to: specify and receive coherent changes, see the relative order of coherent
changes.

©2006 Real-Time Innovations. All Rights Reserved 34 0406

Transport priority

DDS provides a TRANSPORT_PRIORITY QoSPolicy in a DataWriter, which
allows a DDS application to take advantage of transports that are capable of
sending messages with different priorities.

The priority is a hint in DDS, and may be used for traffic shaping. The behavior is
transport and middleware dependent, and the middleware is not required to
deliver higher transport priority updates first.

Resource management

DDS provides QosPolicies to specify the memory resources used by the
middleware for sending and receiving samples.

The RESOURCE_LIMITS QosPolicy specifies the resources that the middleware
can utilize in order to meet the requested QoS. The middleware will perform the
data delivery within the confines of the resource limits.

The HISTORY QosPolicy specifies the behavior of the middleware in the case
where the value of a sample changes (one or more times) before it can be
successfully communicated to one or more existing consumers. On the
publishing side this policy controls the number of samples per data-object
instance that should be maintained by a DataWriter on behalf of the associated
DataReaders. On the subscribing side it controls the number of samples per
data-object instance, that should be maintained until the application "takes" them
from the middleware by calling a DataReader.take() method.

The settings of the HISTORY QosPolicy must be within the confines of the
RESOURCE_LIMITS QosPolicy.

Status notifications

DDS specifies a number of status changes that can trigger a listener invocation
on a DDS Entity. The list of status change notifications includes:
INCONSISTENT_TOPIC, OFFERED_DEADLINE_MISSED,
REQUESTED_DEADLINE_MISSED, OFFERED_INCOMPATIBLE_QOS,
REQUESTED_INCOMPATIBLE_QOS, SAMPLE_LOST, SAMPLE_REJECTED,
DATA_ON_READERS, DATA_AVAILABLE, LIVELINESS_LOST,
LIVELINESS_CHANGED, PUBLICATION_MATCHED,

©2006 Real-Time Innovations. All Rights Reserved 35 0406

SUBSCRIPTION_MATCHED. The availability of data is only one of the possible
status notifications. Also, note that data samples are not delivered in a
notification. A listener must call read() or take()on a DataReader to access the
data samples. This architecture make it possible to implement a potentially lower
end-to-end latency middleware, since the extra overhead of determining which
samples are to be delivered is not needed before invoking a listener.

Practical considerations

We have examined the functional similarities and differences between DDS and
JMS, and their implications for distributed application design. In addition, a
number of practical factors come into play when choosing a middleware
technology for building a distributed system. These are discussed next.

Architecture

JMS APIs are described in terms of a client/provider interaction; the client being
the user application, distinct from the JMS provider or the middleware server.
Most popular JMS provider implementations have centralized server-based
architecture; some use a cluster of servers for fault-tolerance and load balancing.
In a centralized server-based architecture, a message must pass via the server,
which introduces extra latency and a potential resource bottleneck.

DDS APIs are described in terms of a peer-to-peer interaction; data is transferred
directly from a DataWriter to a DataReader. DDS implementations generally use
a decentralized peer-to-peer architecture. For example, “RTI Data Distribution
Service” from Real-Time Innovations, Inc (RTI) has a completely symmetric
architecture. There is no single point of failure and data transfer latency is
minimized. Participants can freely join or leave a domain, without needing special
configuration. This is in keeping with the goals of DDS to enable robust, high-
performance, low latency distributed applications.

Platforms

JMS, as the name implies, was developed to provide a portable vendor neutral
Java API for a wide range of MOM implementations. JMS requires the Java

©2006 Real-Time Innovations. All Rights Reserved 36 0406

platform. Some vendors provide JMS like APIs for other programming languages,
but there is no established standard. JMS vendors may also provide proprietary
APIs in other languages, native to the underlying MOM implementation. Also,
note that JMS applications require non JMS APIs to bootstrap the client
application. The standard practice is to use JNDI APIs, which are well
established for Java EE programming.

DDS is an Object Management Group (OMG) standard defined in a language
and platform neutral manner. OMG defines standard platform specific mappings
to create language specific bindings. Therefore, standardized DDS APIs are
available for all OMG supported programming languages; C, C++, and Java
being the most popular. Since DDS is a standard in C, C++, and Java, it is
available on a wide variety of platforms, including popular real-time operating
systems (RTOS), desktop and server operating systems, and Java platforms.

Interoperability

JMS is an API only standard, and does not define an on-the-wire interoperability
protocol. JMS only requires limited message portability on the client side: a
Message created by provider A should be usable with provider B. Beyond this, a
producer written using provider A cannot be expected to deliver messages to a
consumer written using provider B.

Currently DDS is also an API only standard. However, there is active progress
being made at the OMG towards standardizing on a DDS on-the-wire
interoperability protocol.

Transports

JMS being an API only specification does not specify a transport model.
However, since JMS message delivery is reliable (messages are not dropped
unless the provider fails) and ordered, a JMS implementation can benefit from a
reliable transport such as TCP. Being connection-oriented, TCP also fits naturally
into the client/provider scheme. Centralized server based JMS implementations
generally use TCP. They rely on TCP to guarantee reliable and ordered delivery
required by the JMS APIs. Some UDP based implementations do exist; they
implement the reliable and ordered message delivery semantics on top of UDP.

©2006 Real-Time Innovations. All Rights Reserved 37 0406

Like JMS, DDS being an API only specification does not specify a transport
model. However, DDS does not depend on reliable and ordered delivery of
messages. In fact, the “best-effort” delivery QosPolicy is naturally suited to an
unreliable low-latency transport such as UDP, whereas “reliable” delivery may
benefit from the use of a reliable transport like TCP. However, since DDS
middleware must support both delivery schemes, it cannot make any
assumptions about the reliability properties of the underlying transport.
Therefore, DDS middleware is less reliant on the capabilities provided by a
particular class of transport, and may be able to work well with a variety of
transport classes. As an example, the RTI Data Distribution Service
implementation provides a pluggable transport architecture, wherein any kind of
transport can be plugged in, including UDP, TCP, shared memory, and various
specialized transports.

Security

JMS has a provision for optionally specifying a (usernme, password) when
creating a Connection. Beyond this, security issues are left up to the JMS
middleware vendor and the client application.

DDS provides an extension mechanism that can be useful in creating secure
applications. For example, a consumer application can use a DataReader’s
USER_DATA QosPolicy to present security credentials to a DataWriter in the
producer application. The producer application can authenticate the security
credentials; these may potentially contain authorization rights. If the consumer’s
security credentials are not acceptable, the DataReader entity can be
permanently ignored using the DomainParticipant.ignore_subscription()
method. A secure transport provided by the middleware vendor can ensure that
the data is transferred securely.

Administration

JMS implementations minimally require the use of an external means for
configuring and administering Destinations and ConnectionFactories. It is
common practice to use JNDI to access these objects. Vendor provided
proprietary tools must be used to configure the JNDI registries, before they can
be used by an application. Evolving an application over its lifetime requires
coordination with JNDI administration.

©2006 Real-Time Innovations. All Rights Reserved 38 0406

DDS implementations are expected to spontaneously discover each other; the
DDS APIs do not rely on external means for establishing the discovery
information. For example, with RTI Data Distribution Service, the user application
only needs to link in a middleware library; no additional configuration is required
to discover and establish dataflows with peer applications. As a result, DDS
applications are plug-n-play, and require “zero” system administration.

Performance

Middleware performance can be characterized along several aspects including:
(1) the end-to-end latency, i.e. the time required to send a message from a
producer to a consumer; (2) the throughput, i.e. the maximum amount of data per
unit time that can be transferred from a producer to a consumer. While it is
impossible to make any specific comments about performance---this can vary
significantly from one middleware implementation to another (regardless of the
supported APIs)---it is possible to make some general observations regarding
potential middleware performance, based on the different choices made by the
JMS vs. DDS APIs.

As compared with JMS, DDS has several features that can potentially minimize
the end-to-end latency. These include: (1) a “best-efforts” delivery mode that
does not require acknowledgements; (2) reduced message overhead, since
meta-data such as message headers and properties are not specified per
message, but rather on a per endpoint basis; (3) ability to use arbitrary data
types which eliminates the need for converting back-and-forth between user and
middleware provided types; (4) notification of data availability does not include
the actual data, thus avoiding the overhead in setting this up; (5) ability to support
“zero-copy” data access so that an application can access the received data
directly in the middleware internal buffers without requiring a copy; (6) direct
peer-to-peer data transfer from a DataWriter to DataReader without needed an
intermediary. Thus, DDS middleware can potentially have better (lower) latency
performance,

As compared with JMS, DDS has several features that can potentially maximize
the throughput. These include: (a) reduced message overhead as in (2) above;
(b) reduced processing in the data path as a result of (3) and (4) above; (c) direct
data transfer as in (6) above, which eliminates a potential resource bottleneck
and loading point. Thus, DDS middleware can potentially have better (higher)
throughput performance as well.

©2006 Real-Time Innovations. All Rights Reserved 39 0406

Independent studies have observed DDS implementations that provide a factor
of ten performance improvement of over JMS implementations.

Scalability

Scalability refers to the ability to maintain performance levels as more nodes are
added to a distributed system. For example, publish-subscribe scales better
compared to “remote-procedure-calls (RPC)”, due to the loose coupling between
participants. As with performance, it is impossible to make any specific
comments about scalability---this can vary significantly from one middleware
implementation to another (regardless of the supported APIs). We some general
observations regarding potential middleware scalability, based on the different
choices made by the JMS vs. DDS APIs.

As compared with DDS, JMS has certain features that can potentially limit its
scalability compared to DDS. These include (1) PtP messaging domain, which
specifies that a message be delivered to exactly one consumer, and behaves as
if the messages are put in a single logical queue and handed over to one of the
available consumers; (2) centralized server-based architectures, generally used
by JMS implementations will be less scalable than decentralized peer-to-peer
architectures that support direct data transfer between endpoints.

Real-time applications

DDS and JMS vary in their support for the needs of real-time applications. DDS
has a variety of features that directly meet the needs of real-time applications,
and have no counterparts in JMS. This is not surprising since DDS was
developed while keeping real-time requirements in mind.

The real-time specific features of DDS include: (1) a low-latency best-efforts
delivery mechanism; (2) qos policies for predictable delivery; (3) qos policies for
resource management; (4) status notifications; and (5) potential for lower latency
and higher throughput as discussed earlier. In addition, the availability of DDS on
high-performance RTOSes and the ability to utilize low latency transports (for
example UDP instead of TCP) can further minimize end-to-end latency and
support predictable operation. Combined together, they make possible DDS
implementations that enable high-performance real-time distributed applications.

©2006 Real-Time Innovations. All Rights Reserved 40 0406

Enterprise applications

DDS and JMS vary in their support for the needs of enterprise applications. JMS
has a variety of features that directly meet the needs of enterprise applications,
and have no counterparts in DDS. This is not surprising since JMS was originally
developed to provide a Java adaptor for a variety of enterprise messaging
middleware implementations.

The enterprise specific features of JMS include: (1) full transaction support; and
(2) explicit user application message acknowledgements. Combining message
acknowledgements with persistent and durable delivery allows enterprise
applications to guarantee message delivery.

In addition, Java EE, widely used in enterprise environments, supports a
Message-driven Bean. A message-driven bean is a data consumer integrated
into the enterprise java beans (EJB) framework. Producers are written directly
using the messaging API. While the message-driven bean specification does not
assume the use of JMS, it is the most commonly messaging technology
supported by Java EE vendors.

JMS implementations generally also support for JTA, so that a message
application can participate in a distributed transaction. Also, the JNDI APIs
generally used by JMS applications are included in the Java EE specifications.

Thus, JMS is well integrated into enterprise application frameworks; given its
legacy this is hardly surprising. However, DDS can also be used in enterprise
environments; a message-driven bean using DDS can potentially simplify Java
EE integration.

©2006 Real-Time Innovations. All Rights Reserved 41 0406

Using DDS and JMS together

We have compared the DDS and JMS technologies side-by-side, and considered
the practical issues faced when using them. It should be obvious that the choice
of DDS or JMS as the middleware technology has a significant impact on a data-
centric design. While DDS and JMS offer some capabilities that are similar, there
also offer some unique capabilities. Thus, a data-centric design may employ both
in complementary ways. There is nothing precluding the use of JMS and DDS
together in the same application. In developing a distributed system using both
JMS and DDS, certain capabilities can facilitate development and integration.
These include (1) DDS-JMS bridging; (2) JMS/DDS bindings; and (3) DDS for
JMS discovery.

JMS-DDS bridging

DDS-JMS bridging involves creating a “bridge” that is both a DDS and JMS
application. A bridge allows JMS and DDS applications to interoperate.

A bridge forwards JMS messages as DDS data updates, and DDS data updates
as JMS messages. A “bridge configuration” file can specify the mapping between
DDS and JMS topics, types, and QoS. Such a bridge will incur data conversion
and mapping overhead, and introduce a single point of failure between the DDS
and JMS domains. It will be limited to supporting the “least common
denominator” i.e. only the overlapping capabilities of DDS and JMS. It may not
be always possible to provide end-to-end data delivery semantics. However, it
can be useful for integrating disparate sub-systems using JMS or DDS.

JMS/DDS bindings

JMS/DDS bindings wrap a DDS middleware with JMS APIs. JMS/DDS bindings
can be useful for porting applications written to a JMS API to a DDS domain, or
for developing JMS applications that are interoperable with DDS applications, or
simply to enable a potentially higher performance JMS implementation.

Since DDS provides finer grained data distribution and management of data
flows with many more QoS, it is possible to efficiently map and implement JMS
APIs on top of DDS. JMS features not directly provided by DDS, such as PtP

©2006 Real-Time Innovations. All Rights Reserved 42 0406

messaging semantics, full transactional semantics, and client acknowledgement,
can be implemented on top of the DDS APIs. The remaining JMS features can
be mapped into DDS APIs.

Note that implementing a DDS API on top of JMS is not a practical idea, since
JMS does not provide the fine granularity and low-level primitives needed to
provide an efficient DDS implementation.

DDS for JMS discovery

JMS clients rely on non-JMS APIs for creating the ConnectionFactory and
Destination objects. Typically these objects are obtained by performing a JNDI
lookup; these must have been already registered with the JNDI directory.

An application can alternatively utilize DDS to discover these objects. A JMS
provider, they could use DDS to announce the configured ConnectionFactory
and Destination objects to the client applications. A JMS client application would
receive the available objects, select the ones it is interested in, and bootstrap the
JMS APIs. This approach is useful in a mixed DDS and JMS environment, where
DDS and JMS are used simultaneously to distribute different types of
information. JMS applications can benefit from the use of DDS’s spontaneous
discovery mechanism.

Conclusions

DDS and JMS differ in their ability to cater to the key data-centric design
requirements. We discussed these differences with respect to (1) data modeling
and manipulation, including lifecycle management, data filtering, and
transformation; (2) dataflow routing and discovery, including point to point
connectivity; (3) delivery quality of service (QoS) per data flow, including delivery
effort levels, timing control, ordering control, time-to-live, and message priority;
(4) resource specification and management, including resource limits, and
history;(5) resiliency to failures, including redundancy and failover, and status
notifications; and (6) performance and scalability.

©2006 Real-Time Innovations. All Rights Reserved 43 0406

DDS is newer standard based on fundamentally different paradigms than JMS,
with regards to data modeling, dataflow routing, discovery, and data typing; these
differences enable applications designers with powerful new architectural
possibilities. Despite these differences, the user experience of writing to DDS
APIs is similar to that of JMS APIs. DDS offers several enhanced capabilities
with respect to data filtering and transformation, connectivity monitoring,
redundancy and replication, and delivery effort. DDS offers new capabilities with
respect to data-object lifecycle management, predictable delivery, delivery
ordering, transport priority, resource management, and status notifications. JMS
offers some capabilities not offered by DDS. These include client application
acknowledgements, full transaction support, message priority, and point-to-point
semantics requiring a message to be delivered to exactly one of many
consumers.

DDS is amenable to a decentralized peer-to-peer architecture, which can be
more robust and efficient compared to centralized server based architecture
commonly used for JMS. Unlike JMS, which is a Java language standard,
standard DDS APIs are available in many languages. Neither DDS nor JMS
provide an interoperability protocol, although there is one currently under
standardization for DDS. Neither specifies a transport model, although there are
some capabilities in DDS that are better suited to unreliable transports such as
UDP, while JMS can generally benefit from the availability of a reliable transport
like TCP. Both DDS and JMS defer security to the application, and only provide
support for communicating security credentials. Unlike DDS, JMS requires
administration of the JMS provider (server) and JNDI registries. The API design
choices made by DDS can support potentially higher performance (lower latency
and higher throughput) and better scalability than JMS. DDS has some
capabilities optimized for real-time applications, not found in JMS. JMS has some
capabilities optimized for enterprise applications, not found in DDS.

DDS and JMS can be used simultaneously in an application. Infrastructure
already invested in JMS can leverage DDS, and vice-versa. Possible approaches
include: JMS-DDS bridging, JMS/DDS bindings, and using DDS for JMS
discovery.

If you are designing or integrating distributed data-centric applications, DDS and
JMS merit careful consideration. Using one or both can considerably simplify a
data-centric design and integration, and help maintain the focus on application
issues, rather than becoming bogged down by communication and data delivery
concerns.

©2006 Real-Time Innovations. All Rights Reserved 44 0406

References

Data Distribution Service for Real-time Systems, v1.1,
http://www.omg.org/technology/documents/formal/data_distribution.htm

J2EE Java Message Service (JMS), http://java.sun.com/products/jms/

 RTI Data Distribution Service,
http://www.rti.com/products/data_distribution/index.html

Acronyms

Acronym Description

API Application Programming Interface

CORBA Common Object Request Broker Architecture

DDS Data Distribution Service

DCPS Data Centric Publish Subscribe

DLRL Data Local Reconstruction Layer

EJB Enterprise Java Beans

HLA High Level Architecture

JDBC Java Database Connectivity

JMS Java Message Service

JNDI Java Naming and Directory Service

Java EE Java Enterprise Edition (previously known as J2EE)

JTA Java Transaction API

MOM Message Oriented Middleware

OMG Object Management Group

P-S Publish Subscribe

PtP Point-to-Point

Pub/Sub Publish Subscribe

RTI Real-Time Innovations

RTOS Real-Time Operating System

SOA Service Oriented Architecture

TCP Transmission Control Protocol

UDP User Datagram Protocol

UML Unified Modeling Language

