Overview of Open Services for Lifecycle Collaboration (OSLC)

INCOSE IW MBSE Workshop

Axel Reichwein January 21, 2018 Koneksys

Axel Reichwein

- Developer of multiple data integration solutions based on Open Services for Lifecycle Collaboration (OSLC)
- Background in aerospace engineering
- Since PhD, focus on data integration
- Since Koneksys, focus on OSLC
- Previously involved in standardization efforts related to SysML (Systems Modeling Language)

 Presented OSLC at multiple conferences: INCOSE, OMG, SAE International Automotive, North American Modelica Users Group, IBM InterConnect, IBM Innovate, NoMagic World Conference, CIMdata Systems Engineering Workshop

Koneksys

Koneksys helps organizations create data integration solutions using

- Linked Data
- Open Services for Lifecycle Collaboration (OSLC)
- Big Data frameworks
- Graph Databases

Located in San Francisco. In business since 2012.

Koneksys Clients

Status Quo of Collaboration

According to David Meza, Head of Knowledge Management at NASA

"Most engineers have to look at 13 different sources to find the information they are looking for"

"46% of workers can't find the information about half the time"

"30% of total R&D funds are spent to redo what we've already done once before"

"54% of our decisions are made with inconsistent, or incomplete, or inadequate information"

https://www.youtube.com/watch?v=QEBVoultYJg

Consequences of Bad Collaboration

Distributed Engineering Information

One technical system described from different perspectives

One technical system, but a lot of distributed information

Distributed information is challenging for collaboration

Overlaps and Relationships in Engineering Information

Overlaps due to data duplication (e.g. same parameter used in different models or reports)

Logical relationships such as a requirement verified by a test case

The more complex a system is, the more relationships exist between engineering information

Problem: Rollover Risk of SUVs

Higher center of gravity -> higher risk of rollover More than a third of all fatal crashes in the US are rollovers!

http://www.cars.com/go/crp/buyingGuides/Story.jsp?section=SUV&story=suvSafe2012&subject=stories&referer=&year=New

Static Stability Factor Test

System Engineer defines SSF Test Case

Mechanical Engineer computes center of gravity height of new vehicle through geometric model

Fishhook Maneuver Simulation

Link between COG Parameter of different models

Center of gravity in geometric model

Center of gravity in simulation model

Relationships between Engineering Data

Reality: Many Relationships between Engineering Data

Collaboration Challenges in Designing Systems

Data Integration Benefits

Key Data Integration Concepts and Standards

- 1. Standard machine-readable data format = RDF
- 2. Standard to identify data = URL
- 3. Standard to access data = HTTP

- No license costs
- No vendor lock-in
- Mature and widely adopted infrastructure
- Abundance of Web specialists/developers

Hypertext + Internet = Web

Hypertext System 1

Hypertext System 2

Problem: No Compatibility between hypertext systems + different protocols to access and connect documents on the internet (Gopher, WAIS, etc...)

WITH THE WEB

One global hypertext system = Web One protocol to access and connect documents

Extending Web of documents to a Web of Data

URLs = Common Global Information Identifiers

Koneksys

HTTP = Common Protocol to Access Information

Web of Documents

Koneksys

HTML + RDF = Common Web Data Formats

Schemas for Data Interoperability

OSLC Domain-specific Standards

Links for Data Integration

Mashup Applications

Koneksys

Open Services for Lifecycle Collaboration (OSLC)

Standards for servers hosting data (Hypermedia REST API + Linked Data REST API)

Standards for web-based data interoperability

Adopted so far mainly for Application Lifecycle Management (ALM), systems and requirements engineering

Open Community

Koneksys

OSLC to achieve the Digital Thread

We need you to help promote OSLC!

New OSLC Web site: <u>http://oslc.co/</u>

Adding your company logo to the list of supporters on the web site helps the OSLC community grow

If end user organizations show support for OSLC, then vendors, consultants, and developers will offer more support for OSLC

Open Services for Lifecycle Collaboration

Creating standard REST APIs to connect data

Thanks and get in touch! <u>axel.reichwein@koneksys.com</u>